Intervención de la enfermedad de pérdida de tejido de corales pétreos en Utila, Honduras usando tratamientos con Base2B y amoxicilina
PDF (English)

Palabras clave

Antibiótico
Arrecifes de coral
EPTCD
Honduras
Tratamiento

Cómo citar

Cerrato, A. M., Burgess, S., & Clark, C. (2024). Intervención de la enfermedad de pérdida de tejido de corales pétreos en Utila, Honduras usando tratamientos con Base2B y amoxicilina . Innovare Revista De Ciencia Y tecnología, 13(2), 1–7. https://doi.org/10.69845/innovare.v13i2.355

Resumen

Introducción. Las enfermedades en los corales están aumentando debido a factores estresantes antropogénicos y el tratamiento es un desafío debido a la complejidad de replicar los entornos naturales de los arrecifes. La enfermedad de pérdida de tejido de los corales pétreos (EPTC), detectada en 2014 frente a la costa de Florida, se ha convertido en una de las enfermedades nuevas de los corales más letales y se ha extendido por todo el Caribe hasta Utila, Honduras. Métodos. Se llevaron a cabo monitoreos mensuales y tratamientos in situ para EPTC en 97 colonias de coral durante 12 meses utilizando amoxicilina y Base2B en dos sitios de Utila, Honduras. La pasta se aplica alrededor de los márgenes de la lesión prestando especial atención a la técnica de aplicación para maximizar la eficacia. Resultados. De los 97 corales monitoreados, el 91.75% (n=89) de las colonias sobrevivieron, y los dos sitios tuvieron tasas de supervivencia del 97.96% y del 85.42%. Se trataron un total de 842 lesiones y solo 45 lesiones permanecieron activas al final del período de seguimiento. Aunque la intervención del tratamiento detuvo las lesiones a las que se aplicó directamente, no detuvo la aparición de nuevas lesiones EPTC en las colonias de coral. Conclusión. Se descubrió que los tratamientos en sí son muy eficaces. Se observó el desove en corales previamente infectados y curados, lo que indica que el tratamiento funciona para mantener los corales lo suficientemente sanos como para reproducirse. Este tratamiento se sugiere como intervención en una etapa temprana para ayudar a mantener viables tantos genotipos de especies altamente susceptibles como sea posible.

https://doi.org/10.69845/innovare.v13i2.355
PDF (English)

Citas

Aeby, G. S., Ushijima, B., Campbell, J. E., Jones, S., Williams, G. J., Meyer, J. L., Häse, C., & Paul, V. J. (2019). Pathogenesis of a tissue loss disease affecting multiple species of corals along the Florida Reef Tract. Frontiers in Marine Science, 6, 678. https://doi.org/10.3389/fmars.2019.00678

Bourne, D. G., Garren, M., Work, T. M., Rosenberg, E., Smith, G. W., & Harvell, C. D. (2009). Microbial disease and the coral holobiont. Trends in Microbiology 17(12), 554-562. https://doi.org/10.1016/j.tim.2009.09.004

Camacho-Vite, C., Estrada-Saldívar, N., Pérez Cervantes, E., & Alvarez-Filip, L. (2022). Differences in the progression rate of SCTLD in Pseudodiploria strigosa are related to colony size and morphology. Frontiers in Marine Science, 9, 790818. https://doi.org/10.3389/FMARS.2022.790818

Florida Keys National Marine Sanctuary [FKNMS]. (2018). Stony coral tissue loss disease case definition. Florida Department of Environmental Protection. https://floridadep.gov/sites/default/files/Copy%20of%20StonyCoralTissueLossDisease_CaseDefinition%20final%2010022018.pdf

Forrester, G. E., Arton, L., Horton, A., Nickles K., & Forrester, L. M. (2022). Antibiotic treatment ameliorates the impact of stony coral tissue loss disease (SCTLD) on coral communities. Frontiers in Marine Science, 9, 859740. https://doi.org/10.3389/fmars.2022.859740

Goetz, M. (2006). Ctenosaura bakeri. Husbandry guidelines and bibliography. Durrell Wildlife Conservation.

Landsberg, J. H., Kiryu, Y., Peters, E. C., Wilson, P. W., Perry, N., Waters, Y., Maxwell, K. E., Huebner, L. K., & Work, T. M. (2020). Stony coral tissue loss disease in Florida is associated with disruption of host–zooxanthellae physiology. Frontiers in Marine Science, 7, 576013. https://doi.org/10.3389/fmars.2020.576013

Lee Hing, C., Guifarro, Z., Dueñas, D., Ochoa, G., Nunez, A., Forman, K., & McField, M. (2022). Management responses in Belize and Honduras, as stony coral tissue loss disease expands its prevalence in the Mesoamerican reef. Frontiers in Marine Science, 9, 883062. https://doi.org/10.3389/fmars.2022.883062

Maynard, J., van Hooidonk, R., Eakin, C. M., Puotinen, M., Garren, M., Williams, G., Heron, S. F., Lamb, J., Weil, E., Willis, B., & Harvell, C. D. (2015). Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nature Climate Change, 5, 688-694. https://doi.org/10.1038/nclimate2625

McCranie, J. R., Wilson, L. D., & Köhler, G. (2005). Amphibians and reptiles of the Bay Islands and Cayos Cochinos, Honduras. Bibliomania.

McField, M., Soto, M., Martinez, R., Giró, A., Guerrero, C., Rueda, M., Kramer, P., Roth, L., & Muñiz, I. (2024). 2024 Mesoamerican Reef report card. Healthy Reefs for Healthy People. www.healthyreefs.org

Meiling, S. S., Muller, E. M., Lasseigne, D., Rossin, A., Veglia, A. J., MacKnight, N., Dimos, B., Huntley, N., Correa, A. M. S., Burton Smith, T., Holstein, D. M., Mydlarz, L. D., Apprill, A., & Brandt, M. E. (2021). Variable species responses to experimental stony coral tissue loss disease (SCTLD) exposure. Frontiers in Marine Science, 8. https://doi.org/10.3389/fmars.2021.670829

Meyer, J. L., Castellanos-Gell, J., Aeby, G. S., Häse, C. C., Ushijima, B., & Paul, V. J. (2019). Microbial community shifts associated with the ongoing stony coral tissue loss disease outbreak on the Florida Reef Tract. Frontiers in Microbiology, 10, 2244. https://doi.org/10.3389/fmicb.2019.02244

Mullen, K. M., Peters, E. C., & Harvell, C. D. (2004). Coral resistance to disease. In E. Rosenberg & Y. Loya (Eds.). Coral health and disease. Springer. https://doi.org/10.1007/978-3-662-06414-6_22

Mydlarz, L. D., McGinty, E. S., & Harvell, C. D. (2010). What are the physiological and immunological responses of coral to climate warming and disease? Journal of Experimental Biology, 213(6), 934-945. https://doi.org/10.1242/jeb.037580

Neely, K. (2020). Florida Keys Coral Disease Strike Team: FY 2019/2020 Final Report. Florida Department of Environmental Protection. https://floridadep.gov/rcp/coral/documents/florida-keys-coral-disease-strike-team-fy-19-20-final-report

Neely, K. L., Macaulay, K. A., Hower, E. K., & Dobler, M. A. (2020). Effectiveness of topical antibiotics in treating corals affected by Stony Coral Tissue Loss Disease. PeerJ, 8, e9289. https://doi.org/10.7717/peerj.9289

Neely, K. L., Shea, C. P., Macaulay, K. A., Hower, E. K., & Dobler, M. A. (2021). Short- and long-term effectiveness of coral disease treatments. Frontiers in Marine Science, 8, 675349. https://doi.org/10.3389/fmars.2021.675349

Precht, W. F., Gintert, B. E., Robbart, M. L., Fura, R., & van Woesik, R. (2016). Unprecedented disease-related coral mortality in Southeastern Florida. Scientific Reports, 6, 31374. https://doi.org/10.1038/srep31374

Richardson, L. L. (1998). Coral diseases: what is really known? Trends in Ecology and Evolution, 13(11), 438-443. https://doi.org/10.1016/s0169-5347(98)01460-8

Ritchie, K. B. (2006). Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Marine Ecology Progress Series, 322, 1-14. https://doi.org/10.3354/ meps322001

Rosales, S. M., Clark, A. S., Huebner, L. K., Ruzicka, R. R., & Muller, E. M. (2020). Rhodobacterales and Rhizobiales are associated with stony coral tissue loss disease and its suspected sources of transmission. Frontiers in Microbiology, 11, 681. https://doi.org/10.3389/fmicb.2020.00681

Rosenau, N. A., Gignoux-Wolfsohn, S., Everett, R. A., Miller, A. W., Minton, M. S., & Ruiz, G. M. (2021). Considering commercial vessels as potential vectors of stony coral tissue loss disease. Frontiers in Marine Science 8, 1-8. https://doi.org/10.3389/fmars.2021.709764

Shilling, E. N., Combs, I. R., & Voss, J. D. (2021). Assessing the effectiveness of two intervention methods for stony coral tissue loss disease on Montastraea cavernosa. Scientific Reports, 11(1), 8566. https://doi.org/10.1038/s41598-021-86926-4

Shnit-Orland, M., & Kushmaro, A. (2009). Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiology Ecology, 67(3), 371-380. https://doi.org/10.1111/j.1574-6941.2008.00644.x

Shore-Maggio, A., Runyon, C. M., Ushijima, B., Aeby, G. S., & Callahan, S. M. (2015). Differences in bacterial community structure in two color morphs of the Hawaiian reef coral Montipora capitata. Applied and Environmental Microbiology, 81(20), 7312-7318. https://doi.org/10.1128/AEM.01935-15

Squires, D. F. (1965). Neoplasia in a coral? Science, 148(3669), 503-505. https://doi.org/10.1126/science.148.3669.503

Truc, M, Rivera, A, Ochoa, G. M., Dueñas, D., Guifarro, Z., Brady, G., Zúniga, Z., Gutiérrez, B, Chock, C., & Zaldivar, L. (2023). Evaluating the spread of stony coral tissue loss disease in the Bay Islands, Honduras. Frontiers in Marine Science, 10, 1197318. https://doi.org/10.3389/fmars.2023.1197318

Walton, C. J., Hayes, N. K., & Gilliam, D. S. (2018). Impacts of a regional, multi-year, multi-species coral disease outbreak in Southeast Florida. Frontiers in Marine Science, 5, 323. https://doi.org/10.3389/fmars.2018.00323

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2024 Andrea Michelle Cerrato, Collin Clark, Samantha Burgess

Descargas

Los datos de descargas todavía no están disponibles.